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Abstract

Ultrafine particle (UFP) number concentrations vary significantly on small spatial and
temporal scales due to their short atmospheric lifetimes and multiplicity of sources. To
determine UFP exposure gradients within a community, simultaneous particle number
concentration measurements at a network of sites are necessary. Concurrent par-5

ticle size distribution measurements aid in identifying UFP sources, while providing
data to investigate local scale effects of both photochemical and physical processes
on UFP. From April to December 2007, we monitored particle size distributions at 13
sites within 350 m to 11 km of each other in the vicinity of the Ports of Los Angeles and
Long Beach using Scanning Mobility Particle Sizers (SMPS). Typically, three SMPS10

units were simultaneously deployed and rotated among sites at 1–2 week intervals.
Total particle number concentration measurements were conducted continuously at all
sites. Seasonal and diurnal size distribution patterns are complex, highly dependent
on local meteorology, nearby PM sources, and times of day, and cannot be generalized
over the study area nor inferred from one or two sampling locations. Spatial varia-15

tion in particle number size distributions was assessed by calculating the coefficient
of divergence (COD) and correlation coefficients (r) between site pairs. Results show
an overall inverse relationship between particle size and CODs, implying that number
concentrations of smaller particles (<40 nm) differ from site to site, whereas larger par-
ticles tend to have similar concentrations at various sampling locations. In addition,20

variations in r values as a function of particle size are not necessarily consistent with
corresponding COD values, indicating that using results from correlation analysis alone
may not accurately assess spatial variability.

1 Introduction

Vehicular traffic constitutes one of the most significant urban sources of ultrafine parti-25

cle number concentrations (Geller et al., 2005; Ketzel et al., 2004). People living and
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working in close proximity to heavily trafficked roadways are likely to be exposed to
concentrations well above normal ambient levels. Ultrafine particles (UFPs) make up
the majority of ambient particle number concentrations but only a small fraction of am-
bient PM mass. Given that there is generally little or no correlation between overall
UFP number and PM2.5 mass (Keywood et al., 1999; Singh et al., 2006), measure-5

ments of ambient particle number concentrations have become increasingly important
(Rosenbohm et al., 2005). Measurements of ambient UFP number concentrations at a
single central monitoring station may not be indicative of actual human exposure in a
community (Monn, 2001). In order to address this issue, more intensive particle num-
ber measurements on finer spatial scales are needed. Although few studies to date10

have focused on the spatial variability of UFP number concentrations and size distribu-
tions, most conclude that, in contrast to particle mass, particle number concentrations
can vary widely over a study area. Studies in various LA locations have shown hetero-
geneous PM mass spatial variability (Puustinen et al., 2007; Turner, 2008). Vehicular
emissions and the location in the center of the city have been shown to be significant15

predictors of spatial variation, with larger effects for particle numbers than for fine par-
ticle mass (Lianou et al., 2007). A recent investigation in urban Basle showed that
daytime profiles for UFP number concentrations were more closely related to the num-
ber of heavy-duty vehicles than to the number of light-duty vehicles, implying that diesel
exhaust is a strong source of ultrafine PM (Junker et al., 2000).20

UFP monitoring is challenging due to the combination of high spatial and tempo-
ral variability in particle concentration coupled with the expense to monitor at multiple
locations. In addition, measurements of only UFP total number concentration do not
provide information on particle size distribution, which can be important from a health
standpoint because of differences in respiratory deposition of differently sized particles25

(Kim and Jaques, 2000). Ambient aerosols undergo atmospheric transformation after
emission from a source due to processes such as condensation of low volatility prod-
ucts of photochemical reactions, evaporation of higher volatility particle-bound species,
dilution with clean air, and entrainment of polluted air, all of which generally shift the
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mean diameter of freshly generated UFPs toward larger sizes (Jeong et al., 2004;
Zhang and Wexler, 2002). Size distribution measurements can help in identifying the
types of aerosols present at different sampling sites and the effects of photochemistry
and aerosol aging on a local scale.

Resolution of sources using particle number size distribution measurements in ur-5

ban and suburban atmospheres can be difficult due to the collective influence of a
wide range of sources and meteorological factors. A number of studies have been
shown that vehicular emissions and atmospheric transformation processes result in
particle size distributions with 2 or 3 dominant particle size modes (Hussein et al.,
2005, 2004; Rodriguez et al., 2007; Yao et al., 2007). Analysis of size distributions10

can help to identify emissions from diesel versus gasoline vehicles, background urban
emissions, secondary and transported aerosols, fresh versus aged particles, or differ-
ences between primary particles emitted from new and older engines (Ogulei et al.,
2007; Su et al., 2004). In laboratory tests, gasoline and diesel engine exhaust showed
PM size distributions with mean diameters ranging from 40–80 nm and 60–120 nm,15

respectively (Harris and Maricq, 2001). In urban atmospheric conditions, heavy duty
engines emit particles with mean diameters between 60 and 80 nm (Lehmann et al.,
2003) and spark-ignition engine emissions show bimodal size distributions with aver-
age values of the count median diameter ranging from 40 to 60 nm (Ristovski et al.,
1998).20

The objectives of this study were to measure particle number size distributions at
multiple sites within a community impacted by numerous local sources and to identify
the temporal profiles of PM size distributions at each site. We investigated the spa-
tial variability of PM as a function of particle size and quantitatively assessed these
results using coefficients of divergence and correlation coefficients. Size distribution25

measurements were conducted at 13 sites in the vicinity of the Ports of Los Angeles
(PoLA) and Long Beach (PoLB) using Scanning Mobility Particle Sizers, with simul-
taneous measurements at three to four distinct sites. The health and environmental
consequences of air pollution impacts resulting from goods movement are substantial,

9644

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/9641/2008/acpd-8-9641-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/9641/2008/acpd-8-9641-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
8, 9641–9672, 2008

Spatial variability of
PM size distributions

M. Krudysz et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

therefore accurate assessment of the spatial variability of UFP number concentrations
and size distributions can help in identifying exposure hotspots. A companion study of
total UFP number concentrations is reported in Moore et al. (2008) and those results
will not be discussed in detail here. These studies were conducted in conjunction with
the multi-investigator Harbor Communities Monitoring Study sponsored by the Califor-5

nia Air Resources Board.

2 Experimental methods

2.1 Sampling sites

The sampling sites are located in the San Pedro/Wilmington/Long Beach, CA area,
which includes a complex mix of industrial (refineries, power plants), and transporta-10

tion sources (marine vessels, diesel trucks, port activities) influencing UFP number
concentrations and size distributions. The community was monitored for a 9-month
sampling period to capture the changes in particle size distribution associated with
seasonal variations as well as the peak in port activities that occurs in October. Thir-
teen sampling sites are shown in Fig. 1. SP1 is located in the city of San Pedro, sites15

W1-W3 are located in Wilmington, and sites LB1-LB9 are part of the city of Long Beach.
The sites are 320 m to 11 km apart and are located in and around the PoLA and PoLB.
The ports are the entry point for almost half (40%) of all cargo entering the United
States annually, and substantial growth in port container traffic is expected in the next
ten years (Mercer Management Consulting, 2001). The combined Ports and related20

port activities such as ships, cargo handling equipment, locomotives, and heavy-duty
diesel trucks are collectively a dominant source of criteria pollutants such as SO2, NOx
in Southern California and are subject to increasing scrutiny.

During each 1 to 3-week sampling period, particle number concentrations and size
distributions were measured simultaneously at two to four sampling sites. Table 125

shows the sampling period at each site, along with the number of valid observation
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in each sampling period, meteorological parameters, and particle number statistics.
Except for the nearly continuous W2 data, monthly information from all the other sites
includes only data from the actual sampling days. For example, July and December
data include only 18 and 11 days, respectively. The sites sampled concurrently were
chosen based on the proximity to each other to identify differences between sites on a5

macro-scale and the dissimilarity in potential sources influencing UFP concentrations.
Each site was visited twice a week to download data and to ensure proper operation of
all instruments.

SP1 is the background site located at the edge of the Pacific Ocean; it is mostly
upwind of Port activities and is not close to significant motor vehicle traffic. It was sam-10

pled in the summer and the winter period to determine to what extent seasons influence
particle number concentrations at a location impacted minimally by local combustion
sources. Another background site, LB1, was chosen for comparison to the SP1 site
and to determine how emissions from port activities influence particle size distribu-
tions. Site W1 is across a shipping channel and is located north of the PoLA in an15

industrial area, away from heavily-traveled roadways. Site W2 is located at the inter-
section of Harry Bridges Boulevard and Fries Avenue, a major arterial roadway with
significant diesel truck traffic and is also affected by both port activities and local traffic
emissions. The site is directly north of the PoLA and south of the Wilmington city cen-
ter. The W2 site was monitored continuously during the entire sampling period, thus20

allowing for both seasonal and spatial comparisons.
The LB2 and LB3 sites were sampled simultaneously in the spring. They are only

320 meters apart from each other and are both influenced by heavy-duty diesel traffic.
The I-710 splits the LB4 and the LB5 sites. LB5 is situated just west of the freeway
whereas the LB4 site is 275 m east of that roadway. These sites were sampled concur-25

rently during the summer for comparison of the differences in number size distributions
between sites close to a major freeway with an approximately 25–30% heavy-duty
diesel traffic, mainly from the Los Angeles port system (Zhu et al., 2002). Another pair
of concurrently sampled sites (LB8 and LB9) were chosen for their proximity to rail, the
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heavily diesel-impacted Terminal Island Freeway (SR-103), and the Intermodal Con-
tainer Transfer Facility (ICTF) a transshipment/transfer point from truck to rail for cargo
containers leaving the Ports. LB8 is located adjacent to a school immediately to the
east of SR-103, and site LB9 is located approximately 20 m to the north of its termina-
tion at Willow Street. Sites W3, LB6, and LB7 are located in mostly residential portions5

of the study area and, number concentrations at these locations are influenced mostly
by local vehicular emissions.

2.2 Instrumentation

A Condensation Particle Counter (CPC, TSI Model 3022A) was used to measure total
particle number (PN) concentrations (Results reported in Moore et al., 2008) and a10

Scanning Mobility Particle Sizer (SMPS, TSI Model 3936) was used to measure num-
ber based size distributions. The SMPS system includes a long Differential Mobility
Analyzer (TSI, Model 3081) and a butanol-based CPC. The system was set to mea-
sure particles in the size range from 14–736 nm with a total scanning time of 5 min.
Aerosol Instrument Manager software (v8.0, TSI) was used to control the SMPS sys-15

tem, log data and export SMPS data. A Vantage Pro 2 Weather Station (Davis In-
struments, Hayward, California) collected meteorological data including temperature,
humidity, and wind speed and direction at each site.

2.3 Data processing/validation

The four SMPS units and CPC instruments used throughout the study were tested20

side-by-side for intra-instrument variability. One of the well-characterized SMPS was
used as a reference instrument to characterize the channel-by-channel response of the
other instruments. Based on this characterization, a size-specific correction factor for
each SMPS was determined and applied during data analysis. With this correction, the
four instruments indicated the same size distribution (within 10%) when sampling the25

same aerosol. Corrections to the size distribution for SMPS inlet losses due to diffusion
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were calculated as a function of particle diameter using Gormley-Kennedy equations.
Results from each 5-min scan were examined to exclude outliers and the data were

converted to hourly averages. Validation of the data obtained by the SMPS system was
performed by comparing total particle number concentrations calculated by summing
across all size intervals to results obtained from the total count CPC. Although the5

SMPS system showed on average 20–30% lower total particle number concentrations,
the hourly averages obtained from the two units were highly correlated (r>0.9).

2.4 Statistical analysis

Accurate assessment of intraurban spatial variability requires analysis using correlation
coefficients in conjunction with coefficients of divergence and absolute concentration10

differences between sites (Wilson et al., 2005). Spearman correlations were used to
determine the relationships among the sampling sites. Spatial variability was further
assessed by calculating the coefficients of divergence (COD). The COD provides infor-
mation on the degree of uniformity between sampling sites and is defined as

CODf h=

√√√√1
n

n∑
i=1

(
xif−xih
xif + xih

)2

(1)15

where xi f is the i th hourly averaged concentration measured at site f , f and h are
two different sites, and n is the number of observations. Small COD values imply
similarities between the concentrations measured at various sites, while COD values
approaching unity indicate vast differences between sites. The accuracy of the number
concentration measurements is limited by statistical error at the higher end of the size20

distribution. Therefore, the last 19 size intervals (covering the range of 385–736 nm)
were combined into 3 size bins (385–414 nm, 429–495 nm, 514–736 nm) for the COD
analysis. This binning resulted in less than 10% uncertainty in particle number con-
centrations in each bin.
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COD analysis has been used previously to assess spatial variability, and thorough
reviews of these studies are available elsewhere (Turner, 2008; Wilson et al., 2005).
Similar to previous reports, COD values greater than approximately 0.20 are indicative
of a relatively heterogeneous spatial distribution (Wilson et al., 2005).

3 Results and discussion5

3.1 Meteorology

Meteorological data are shown in Tables 1 and 2. Average temperatures and relative
humidity were consistent throughout the study period, showing some seasonal varia-
tion. Data from site W2 indicate a drop in temperatures from July to December, but
stable relative humidity levels throughout the sampling period. For most of the sites,10

northerly and westerly winds dominated in the sampling area. Diurnal wind profiles
from selected sites indicate differences in wind patterns at various sampling sites. For
example, wind directions from the west to southwest, consistent with sea breeze and
converging air flows around the Palos Verdes peninsula are found at the SP1 site dur-
ing the night and morning hours in the summer. West to northerly winds influence the15

LB1 site during the evenings and nights, but southerly winds occur during the mid-
day. The diurnal wind patterns indicate that, although winds originate mostly from the
north to west, southerlies can occur. Differences in wind patterns during this study
provide clues regarding the sources influencing each site’s particle size distribution. A
more complete discussion of the overall wind patterns at each study site is provided in20

Moore et al. (2008).

3.2 Particle number size distributions

SMPS data from each site resulted in 111 size intervals (95 size intervals in the COD
and correlation analyses), which allow the determination of the relationship between
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sites as a function of particle size. Size distributions varied widely from site to site,
and were influenced by changing meteorological conditions and PM sources. Modes
were present at a number of different particle sizes and they changed rapidly between
measurements. Figure 2a–2g show average particle size distributions for each site and
sampling period. The standard error of the mean for each sampling period, not shown5

for clarity, at most of the sites was on the order of 20–30%, 20%, 10%, and <5% for par-
ticle sizes <30 nm, 30–100 nm, and 100–150 nm, and 150–730 nm, respectively. For
most of the sites, a single mode is present at particle sizes 20–60 nm, although modes
and shapes of size distributions vary depending on the site, time of day, and season.
Due to instrument limit of detection, particles less than 14 nm were not accounted for;10

therefore, the results presented here do not include a possible mode of freshly emitted
particles below that size range.

3.2.1 Seasonal variability

Where data are available, seasonal variations were observed between the summer and
fall/winter months. Size distributions from the November and December periods show15

overall higher concentrations. Seasonal differences are observed at LB2, LB8, LB9,
and W3 (Figs. 2c, e and f). Previous investigations of particle size distributions in the
Long Beach area show that average particle number concentrations are higher in win-
ter than in the summer and that larger number median diameters in winter compared
to summer may be due to higher relative humidity contributing to growth of particles by20

condensation of water vapor. During the fall, Santa Ana wind conditions with strong,
dry offshore wind flows, mostly in late October did not result in appreciably different
particle size distributions.

Background sites, SP1, W1, and LB1 are grouped together in Fig. 2a. Lowest con-
centrations are observed at SP1 during the summer, with similar concentrations for25

particles <20 nm in November and December. The increase in number concentra-
tions for particles 20–120 nm can be attributed to the shifts in wind patterns during
late November and early December. Mostly calm and northerly winds were observed
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during the night and morning hours, bringing particles from the heavily-trafficked Wilm-
ington area, the Port of Los Angeles, and local traffic in San Pedro as well as Port
trucking on arterial streets. A similar number size distribution is observed at the W1
site during the fall season, with a predominant mode at around 50–70 nm and aver-
age geometric number mean particle size of 60 nm (Table 1). The broader mode with5

larger particle sizes at the background locations compared to the inland sites, LB2-LB9,
where modes occur at 20–30 nm and average geometric mean diameters are between
33–46 nm, is consistent with previous studies comparing urban areas to coastal and
background locations (Turner, 2008; Weijers et al., 2004).

W2 was sampled continuously from April to December and shows seasonal differ-10

ences in particle number concentrations (Fig. 2b). Lowest concentrations for parti-
cles <20 nm are observed in September, followed by August, July, October, April–May,
November, and December. The peaks in the data are not necessarily consistent with
peaks in port container traffic and associated peaks in truck traffic, which occur in Au-
gust and September in advance of the holiday season (Port of Long Beach, 2007; Port15

of Los Angeles, 2007), suggesting that the increase in diesel traffic emissions does
not alone increase UFP concentrations. Local traffic can influence particle number dis-
tributions as well. In contrast to the seasonal patterns discussed above for the other
sites, W2 shows that, although November and December concentrations are relatively
higher, spring and summer levels can also be high, especially for the smallest particles.20

The SMPS data can be relatively limited compared to the CPC data. Total particle num-
ber concentrations in Table 1 show highest levels in December, with lowest concentra-
tions in the summer, consistent with expected seasonal patterns. No distinguishable
differences in meteorological parameters can be identified to explain these differences,
but shifts in winds and local traffic patterns on a diurnal basis may be responsible for25

the high particle levels during the spring and summer months. Previous investigations
of seasonal patterns in the Long Beach area near the I-710 indicate that lower ambient
temperatures favor greater particle number concentrations in the 6–25 nm size range
and a smaller number concentration in the 50–200 nm particle size range (Zhu et al.,
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2004). These trends can be seen at LB3, LB8, and at W2.

3.2.2 Diurnal variability

The diurnal and season patterns in particle number size distributions are shown in
Fig. 3a–d. Corresponding wind directions at site W2 during the nighttime (20:00–
06:00), morning commute (07:00–10:00), midday (11:00–14:00), and evening com-5

mute (15:00–19:00) are presented in Table 2. For most months, evening and nighttime
particle number concentrations are lower than morning and daytime levels. Relatively
higher particle number concentrations, especially for particles <50 nm, occur during the
morning commute hours and stay elevated throughout the day, dropping in the evening.
Particles in the 50–100 nm size range, associated with diesel fuel combustion (Mejia,10

2008), also show higher concentrations during the morning commute hours, with lowest
levels in the afternoon. A limited study of traffic counts conducted at the intersection of
Harry Bridges and the I-110 in 2006 reveal a diurnal pattern in total vehicle counts, es-
pecially port-related heavy-duty diesel trucks (Houston, 2008), which may explain the
diurnal patterns observed in particle number concentrations. Volumes of diesel trucks15

increase during the morning commute hours, reaching approximately 400 trucks per
hour by 09:00–10:00, and remain at around 300 trucks per hour throughout the day,
increasing to 500 trucks during the 14:00–15:00 h. The wind shift from north to north-
west as the day progresses from morning to evening further indicates that the diurnal
pattern observed at W2 is driven by changes in UFP sources influencing the site.20

Diurnal profiles for sites close to major emissions sources, such as LB4 and LB5
show that minimum number concentrations occur during the nighttime hours, but max-
imum levels are highly dependent on the location of the sampling site (Fig. 4a–b). Dur-
ing morning commute hours, a bi-modal distribution is observed at LB5, with a peak
at 20–30 nm and a smaller one at 60–70 nm. Size distributions from vehicular emis-25

sions have previously been shown to have a nucleation mode at around 20 nm arising
from the condensation of organic species onto solid nuclei (Morawska and Zhang,
2002) and a second submode at around 60 nm arising from primary exhaust particles
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originating from fuel combustion or transformational growth of smaller particles by co-
agulation and vapor condensation (Geller et al., 2005; Jamriska et al., 2004). Number
concentrations for particles in the size range of 40–60 nm, associated with diesel en-
gine emissions (Ntziachristos et al., 2007; Robert et al., 2007), remain relatively high
throughout the day, decreasing into the evening and night.5

3.2.3 Spatial variability

Our spatial variability analysis identified clear differences between concurrently sam-
pled sites. COD values calculated for each site pair monitored simultaneously and then
averaged across all pairs and sampling periods, show an inverse relationship between
particle size and CODs (Fig. 5). Overall, number concentrations of smaller particles dif-10

fer from site to site, whereas larger particles tend to have more similar concentrations
at various sampling locations. Based on the previously discussed definition of spatial
variability, results from this study show that, on average, COD values are greater than
0.2 for all particle sizes measured, suggesting moderate to high spatial heterogene-
ity. In addition to COD analysis, Spearman correlation coefficients (r) were used to15

measure the strength of association between two sampling sites, where high r val-
ues indicate that the contribution of particles were similar for both sites throughout the
sampling period.

Comparison of background locations, SP1 and LB1 illustrated in Fig. 6a shows that
even sites considered clean and relatively far away from most combustion sources20

show vast spatial differences. Very high spatial divergence is observed for particles
<20 nm, with decreasing spatial heterogeneity for particles in the 20–40 nm size range.
This difference is driven by much higher concentration in particles <30 nm at LB1
(Fig. 2a). Although both sites are located at the edge of the ocean, LB1 is by the
Port of Long Beach and is influenced by transient emissions from ships entering and25

leaving the harbor. Diurnal wind patterns (Table 2) show that differences in wind direc-
tions during the afternoon and evening hours can also contribute to these high UFP
levels. Strong correlations (r=0.7–0.8) indicate that although differences in absolute
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concentrations between the sites can be great for UFPs and smaller for accumulation
range PM, sources influencing the differently sized PM are constant through the 10-day
sampling period.

Relatively low spatial divergence (COD=0.15–0.35) and high correlation coefficients
(r=0.65–0.85) observed in Fig. 6b are expected for sites separated by only about 320 m5

and impacted by similar PM sources. A truck parking lot is adjacent to the LB3 site,
and the LB2 site is no more than 15 m away from a major diesel truck route. Both
sites exhibit similar PM size distributions with average geometric number mean parti-
cle size of about 42 nm (Table 1) and modes at 20–30 nm and 30–40 nm at LB3 and
LB2, respectively (Fig. 2c), characteristic of diesel exhaust emissions (Ntziachristos et10

al., 2007; Ogulei et al., 2007). Although both gasoline and diesel vehicles can emit par-
ticles in the 20–40 nm size range, particle number concentrations emitted from diesel
vehicles dominate those emitted by gasoline-powered cars (Geller et al., 2005). Higher
absolute concentrations at LB3 are attributed to the idling heavy-duty diesel trucks and
its very close proximity to the diesel trucks.15

Results from concurrently sampled LB4 and LB5 show that sites separated by about
600 m can experience differences in particle number size distributions. Although the
shapes of the size distributions are similar (Fig. 2d), with geometric mean diameters
at 40–45 nm, LB5 is clearly influenced by more particles in all size ranges than LB4,
which is further east of the freeway. Very high traffic emissions increase particle num-20

ber concentrations in the 20–40 nm size range by two-fold at LB5 compared to LB4,
consistent with previous observations on the I-710 (Westerdahl et al., 2005; Zhu et
al., 2002). CODs in Fig. 6c show a uniformly high spatial divergence (COD>0.40)
between the two sites across all particle sizes. Correlation coefficients are uniform
at around 0.80 for particles 40–200 nm, but a much weaker relationship between the25

sites exists for 14–30 nm particles (r=0.25–0.70) and slightly weaker for 300–400 nm
particles (r=0.60–0.70). These results imply that although the two sites differ in their
particle number concentrations, especially for accumulation mode particles, the differ-
ences are constant throughout the 2-week sampling period. Particles <40 nm are much
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higher in their number concentrations at LB5, but the local emissions sources driving
these differences affect the two sites at different times. Because LB5 is directly next to
the freeway, it is constantly impacted by vehicular emissions and local meteorological
conditions do not play a major role, whereas the types and intensities of UFP sources
influencing LB4 are subject to shifts in wind direction. The turbulence induced by local5

traffic has a large impact on these local observations. As noted in earlier studies, ve-
hicular sources vary widely in their emission characteristics and affect size distributions
to a great extent, especially further away from roadways (Harrison et al., 1999; Zhu et
al., 2002).

LB8 and LB9 are 350 m apart and both are close to numerous particle sources, in-10

cluding a freeway, rail, local roadways, and the ICTF serviced by diesel trucks. LB8,
located about 100 m east of the SR-103 carrying up to 2000 vehicles per hour including
700 diesel vehicles, 600 of which are heavy-duty port-related trucks (Houston, 2008),
has a broad mode at 20–50 nm in its size distribution (Fig. 2e). The TIF frequently
experiences substantial queuing as trucks wait to exit the freeway, thus emissions from15

idling and accelerating trucks impact LB8, especially during daytime hours. A distinct
mode at 25 nm and a smaller mode at 60–70 nm occur at LB9 (Fig. 2f), which experi-
ences emissions from the adjacent ICTF (the congested Willow street, which serves as
the northern terminus of the Terminal Island Freeway), and rail, which passes 90 m east
of the sampling site. The two larger modes observed are consistent with observations20

conducted 30 m and 90 m from the I-710 (Zhu et al., 2002).
The spatial variability analysis shown in Fig. 6d illustrates heterogeneity for parti-

cles <30 nm (COD=0.25–0.6) and relatively low divergence for the larger particles
(COD=0.2), consistent with the differences in the shapes of the size distributions. Com-
parison of these two sites illustrates that differences in absolute particle number con-25

centrations between two sites do not have to be large to create spatial heterogeneity
for particles in certain size ranges. Again, it is important to note that the variation in
correlation coefficients as a function of particle size is not consistent with the variation
in the CODs. Relatively moderate association exists for particles <20 nm (r≈0.70),
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corresponding to high COD values of ≈0.3–0.6. High correlations for particles in the
30–70 nm size range (r≈0.85), lower correlations for 200 nm particles (r≈0.50), and a
moderate association for 300 nm particles (r≈0.6) are all associated with persistently
low COD values of about 0.20. Variability in the temporal association between the sites
may arise from transient events, such as railroad emissions at LB9 and diesel exhaust5

emissions from trucks idling and accelerating.
Spatial and diurnal variability result from differences in traffic patterns, especially

diesel vehicles transporting goods from the ports. The extended hours of operations of
the ports and truck-related facilities is driven by the success of the PierPass program
which provides incentives for cargo owners to move cargo at night and on weekends10

by charging a traffic mitigation fee on container movements during peak hours (Pier-
Pass, 2008). While the goal is to reduce truck traffic and pollution during peak daytime
hours and to alleviate port congestion, the program could extend the hours near-by
community residents are exposed to port truck traffic and UFP emissions.

Comparison of W1 and W3 sites shows an expected inverse relationship between15

CODs and correlation coefficients for sites that differ in their UFP size distributions
(Fig. 6e). Very high COD values of 0.90 are observed for 15 nm particles, decreas-
ing to levels considered spatially homogeneous for particles >60 nm. In comparison
to W3, W1 experiences minimal impact from vehicular emissions, and PM levels mea-
sured at that site can often be attributed to emissions from nearby port activities. The20

broad mode observed in Fig. 2a and the average geometric number mean particle
size of 60 nm are similar to observations conducted at nighttime in an urban environ-
ment, where a mode of 50–70 nm was associated with lack of significant emissions
and particle growth due to coagulation and condensation of semi-volatile species onto
pre-existing particles (Rodriguez et al., 2007). Although concentrations of particles25

<50 nm are very different between the two sites, the correlation coefficients for parti-
cles >100 nm show excellent temporal association (r≈0.90) between the sites. Similar
sources of accumulation mode PM affect the two sites.

The variation in spatial divergence as a function of particle size is illustrated in Fig. 6f.
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W2 is compared to 8 other locations, resulting in a range of site-specific COD values.
Very high spatial heterogeneity (COD >0.80) occurs in comparison to the background
SP1 and W1 sites, especially for freshly emitted particles <20 nm due to the difference
in observed absolute concentrations according to a definition of COD (Turner, 2008).
Lowest spatial divergence for particles <20 nm is observed by comparing W2 to LB55

and LB9, all of which are located very close to roadways with high traffic volumes,
similar to the W2. Low spatial divergence (COD≈0.15) occurs for particles in the 80–
300 nm size range between sites W2 and W1, implying that both sites are influenced
by similar sources that emit particles in all size ranges, decreasing the COD values
these sites.10

Spatial variability on a diurnal scale was investigated by comparing W2 to LB9 LB5
during 4 time periods (Fig. 7a–b). COD values for the W2-LB9 site pair shows clear
diurnal differences, driven by the midday and evening commute hours. An interesting
pattern in COD values as a function of particle size is revealed for the 11:00—14:00
period, when the CODs are temporally resolved. Spatial divergence is moderately high15

and uniform (COD≈0.30) for all particle size ranges, although some fluctuations exist.
As discussed earlier, LB9 is located close to rail and the ICTF, which may result in
varying intensities of PM emissions during different times of day. Differences in particle
number concentrations are very similar regardless of the time of day when comparing
W2 to LB5 (Fig. 7b). This similarity is presumably driven by the continuous PM emis-20

sions throughout the day from the I-710 impacting LB5, and from the Harry Bridges
Avenue close to W2. These results show that spatial variability is highly dependent on
the PM sources impacting the sites and further, spatial variability can differ on a diurnal
scale.

4 Conclusions25

The study reported here investigated how particulate matter number concentrations
from thirteen sites vary as a function of size, season, time of day, and location. PM
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number based size distributions in an urban environment are highly variable based on
temporal and spatial scales because of variations in mobile source patterns and local
meteorological conditions.

Comparison of the number size distributions measured during different seasons
showed that higher concentrations of particles >20 nm and overall higher total5

PN concentrations are observed more often during winter season than during the
spring/summer season. Diurnal profiles for sites close to major emissions sources,
such as LB4 and LB5 show that minimum number concentrations occur during the
nighttime hours, but maximum levels are highly dependent on the location of the sam-
pling sites and are most likely associated with variations in local traffic patterns, as10

observed in other studies (Lianou et al., 2007).
The spatial variability analysis showed concentrations of smaller particles are differ-

ent at each sampling site, but larger particles tend to be more uniform, in general, which
may be a signal of regional aerosol, but exceptions occur on a case-by-case basis.
Both COD values and correlation coefficients were investigated to determine spatial15

variability. Correlation analysis provides information on the overall trend in association
between two sites throughout the sampling period, while COD analysis shows differ-
ences in absolute concentrations among concurrently sampled sites. The two kinds
of statistical analysis, therefore, provide a more complete assessment of spatial and
temporal variability. COD values ranged from 0.10 to 0.90 (LB2-LB5 and W2-SP1, re-20

spectively), with usually high to moderate spatial variability for particles <30 nm, and
moderate to low divergence for larger particles. Spatial heterogeneity exists between
background and source sites especially for particles <40 nm (SP1 and W2), and spatial
homogeneity can be seen between geographically close sites (LB2 and LB3).

COD and correlation analyses reveal that the correlation coefficients as a function of25

particle size do not necessarily follow an expected inverse relationship with the COD
values. While relatively moderate association may exists for some particle sizes, corre-
sponding to high COD values, high correlation coefficients for other particle sizes can
be associated with low COD values. Variability in the temporal association between
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the sites may arise from transient events, such as rail emissions and vehicular exhaust
emissions from diesel trucks idling and accelerating. The large variation in spatial dis-
tributions as a function of particle size suggests that it is not possible to characterize
a community-average concentration of particle number size distribution with only one
monitoring station. To accurately determine human exposure to differently sized PM,5

spatial and temporal variability of PM needs to be assessed. Results presented here
show that particle size distributions vary significantly on a community scale, and can
differ depending on the season and time of day. Epidemiological studies assessing
health effects related to PM exposure should not rely on only one monitoring site, but
ought to use data collected from a large number of monitors located close to important10

UFP sources and operating during different seasons.
The large dataset obtained from this study will be used in future analysis to determine

size distribution profiles of specific sources (ships, rail, diesel vehicles, port activities)
using both detailed weather analysis (direction and speed), and detailed analysis of
video data collected simultaneously with the SMPS observations at each site.15
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Table 1. Site information for each sampling period. Sampling start and end dates, mean and
standard deviations calculated from total particle concentrations, meteorological data, number
of hourly means used in analyses, and the average geometric number mean and standard
deviation particle size.

Sampling period CPC Total Conc. (#/cc) Meteorology SMPS
Site Start End Mean SD Mean Temp Mean RH Dominant n Geo Mean Geo SD

(◦C) (%) Wind (nm) (nm)

SP1
12 Jun 2007 19 Jul 2007 5.5E+03 2.2E+03 18 89.6 W 269 73 2.1
28 Nov 2007 7 Dec 2007 2.2E+04 9.9E+03 14 73.3 W 228 61 1.9

W1 17 Sep 2007 2 Nov 2007 1.8E+04 8.8E+03 19 67.4 N 1025 60 2.0

W2

30 Apr 2007 8 May 2007 N/A N/A 19 52.9 NW 183 37 2.0
18 Jul 2007 27 Jul 2007 2.2E+04 1.3E+04 22 71.8 N 211 44 2.1
2 Aug 2007 31 Aug 2007 2.2E+04 1.5E+04 23 66.5 N 332 45 2.2
1 Sep 2007 30 Sep 2007 2.3E+04 1.4E+04 21 65.2 N 514 46 2.1
1 Oct 2008 31 Oct 2007 2.7E+04 1.6E+04 19 60.8 N 744 43 2.1
1 Nov 2007 30 Nov 2007 2.5E+04 1.8E+04 16 71.0 N 570 45 2.2
1 Dec 2007 12 Dec 2007 3.8E+04 2.2E+04 13 64.4 NW 281 37 2.0

W3
15 May 2007 2 Jun 2007 1.3E+04 7.6E+03 18 69.1 SW 334 47 2.1
13 Oct 2007 2 Nov 2007 3.4E+04 3.2E+04 20 60.5 NW 456 34 2.0

LB1 27 Nov 2007 6 Dec 2007 2.1E+04 1.4E+04 15 71.7 NW 215 43 1.9

LB2
6 Apr 2007 4 May 2007 2.9E+04 2.3E+04 16 66.5 SW 244 42 1.9
3 Nov 2007 12 Nov 2007 2.0E+04 9.0E+03 16 83.2 NW 176 46 2.0

LB3 6 Apr 2007 7 May 2007 3.3E+04 1.9E+04 16 72.0 S 426 42 1.9

LB4 2 Aug 2007 17 Sep 2007 2.3E+04 1.7E+04 23 64.7 N 681 41 1.9

LB5 28 Aug 2007 17 Sep 2007 3.4E+04 1.7E+04 23 65.6 N 478 44 2.0

LB6 2 Nov 2007 12 Nov 2007 1.8E+04 1.1E+04 16 83.0 W 241 35 1.9

LB7 23 Jul 2007 26 Aug 2007 2.5E+04 1.6E+04 23 71.7 SW 588 44 2.0

LB8
15 May 2007 10 Jun 2007 1.6E+04 1.1E+04 17 74.0 SW 636 43 2.0
13 Aug 2007 28 Aug 2007 2.5E+04 1.6E+04 23 68.5 W 332 42 2.0
12 Nov 2007 27 Nov 2007 2.1E+04 1.3E+04 16 68.8 W 288 58 2.0

LB9
29 Jun 2007 24 Jul 2007 3.1E+04 2.0E+04 22 73.9 SW 252 46 2.0
12 Nov 2007 22 Nov 2007 2.8E+04 1.8E+04 17 74.1 NE 247 44 2.0
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Table 2. Diurnal patterns in wind direction for selected sites and sampling periods.

SP1 W2 LB1 LB3 LB4 LB5 LB9
Time of Day Jun–Jul Nov–Dec Apr–May Jul Aug Sep Oct Nov Dec Nov–Dec Apr–May Aug–Sep Aug–Sep Oct–Nov

08:00 p.m.–06:00 a.m. W N NW SE S SE N N NW NW S SE SE N
07:00–10:00 a.m. SW N S S S S N N N NW S SW SW E
11:00 a.m.–02:00 p.m. W W W S N NW NW NW W S SW SW W SW
03:00–07:00 p.m. NW NW NW N NW NW NW NW NW W W NW N SW
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Figure 1.  SMPS sampling sites.  (Latitude and longitude coordinates provided in Moore et al., submitted). 
 

 
 
 
 

 

 

 

 

 

 

 

Fig. 1. SMPS sampling sites. (Latitude and longitude coordinates provided in Moore et al.,
2008).
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Figure 2.  Average particle size distributions measured during each sampling period at each site 
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Fig. 2. Average number-based particle size distributions measured during each sampling pe-
riod at each site.
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Fig. 3. Diurnal and seasonal patterns in number size distributions at site W2 during: (a)
nighttime (20:00–06:00), (b) morning commute (07:10:00), (c) midday (11:00–14:00), and (d)
evening commute (15:00–19:00). All times are Pacific Standard Time (PST).
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Fig. 4. Diurnal patterns in number size distributions at sites: (a) LB4 and (b) LB5.
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Figure 5.  Median and mean CODs across all sites pairs and sampling periods 
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Fig. 5. Median and mean CODs across all sites and sampling periods.
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Figure 6.  CODs and correlations coefficients for selected site pairs.  Closed and open symbols 
indicated COD and r values, respectively. 
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Fig. 6. CODs and correlations coefficients for selected site pairs. (a) SP1–LB1 in November–
December, (b) LB2–LB3 in April–May, (c) LB4–LB5 in August–September, (d) LB8–LB9 in
November, (e) W1–W3 in October, and (f) LB2 with selected sites (assorted months). Closed
and open symbols indicated COD and r values, respectively.
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Fig. 7. Diurnal patterns in CODs for selected site pairs (a) LB2 and LB9 in July, and (b) LB2
and LB5 in September.
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